
Statistical Physics II – Soumyabrata Saha 

Scaling Laws :- 

Scale invariant functions do not change their overall properties when the argument is 
increased or decreased by an arbitrary factor. 

In general, scale invariant functions are defined by 

𝑓(𝑏𝑥) ∝ 𝑓(𝑥) 

The proportionality constant is some function of 𝑏 and thus, we have 

𝑓(𝑏𝑥) = 𝑐(𝑏)𝑓(𝑥) 

Taking the natural logarithm, we get 

ln[𝑓(𝑏𝑥)] = ln[𝑐(𝑏)] + ln[𝑓(𝑥)] 

Let us define, 𝑔(ln 𝑥) = 𝑓(𝑥). Thus, we get 

ln{𝑔[ln(𝑏𝑥)]} = ln[𝑐(𝑏)] + ln[𝑔(ln 𝑥)] 

⟹ ln[𝑔(ln 𝑥 + ln 𝑏)] − ln[𝑔(ln 𝑥)] = ln[𝑐(𝑏)] 

⟹
ln[𝑔(ln 𝑥 + ln 𝑏)] − ln[𝑔(ln 𝑥)]

ln 𝑏 =
ln[𝑐(𝑏)]

ln 𝑏  

Taking the R.H.S. as 𝑘 which is constant independent of 𝑥, we can write the above as 

𝑑[ln 𝑔(ln 𝑥)]
𝑑(ln 𝑥) = 𝑘 

Integrating and taking ln 𝑎 as the constant of integration, we get 

ln 𝑔(ln 𝑥) = 𝑘 ln 𝑥 + ln 𝑎 = ln 𝑎𝑥𝑘 

⟹ ln 𝑓(𝑥) = ln 𝑎𝑥𝑘 

⟹ 𝑓(𝑥) = 𝑎𝑥𝑘 

∴ 𝑓(𝑥) ~ 𝑥𝑘 

The scale invariant function is a monomial of degree 𝑘. 

For an arbitrary scale factor 𝑏, we have 

𝑓(𝑏𝑥) = 𝑎(𝑏𝑥)𝑘 = 𝑏𝑘𝑎𝑥𝑘 

⟹ 𝑓(𝑏𝑥) = 𝑏𝑘𝑓(𝑥) 

∴ 𝑓(𝑏𝑥) ~ 𝑥𝑘 

Let 𝑓(1) = 𝑐 be known. Then, we have for instance 



𝑓 (
1
2) = (

1
2)

𝑘

𝑐 

𝑓(√2) = (√2)
𝑘

𝑐 

𝑓(2) = 2𝑘𝑐 

𝑓(22) = (22)𝑘𝑐 

Thus, if 𝑓(𝑥) known at 𝑥 = 1, it can be calculated for other values of 𝑥. 

If the value of a scale invariant function is known at a particular point, then the values of the 
function is known at all other points. 

Case I :- 

We can have scale invariant functions as a limiting case from a more general functional form. 

Let us take a function of the form, 

𝑓(𝑥) = 𝐴𝑥𝑘 + 𝐵𝑥𝑘+𝑘1 + 𝐶𝑥𝑘+𝑘2 + 𝐷𝑥𝑘+𝑘3 + ⋯ 

Here, 0 < 𝑘1 < 𝑘2 < 𝑘3 < ⋯ 

For 𝑥 ⟶ 0, we have 

𝑓(𝑥) ≈ 𝐴𝑥𝑘 

∴ 𝑓(𝑥) ~ 𝑥𝑘 

The function becomes scale invariant when 𝑥 is very small. 

The scale invariance in physical phenomena is given by power laws. 

Case II :- 

We can also have scale invariant functions where we get a scale dependent shift after the 
argument is scaled by a factor. 

Let us take a function of the form of  

𝑓(𝑥) = 𝑐𝑥2 + 𝑑𝑥 = 𝑐 (𝑥2 + 2. 𝑥.
𝑑
2𝑐 +

𝑑2

4𝑐2) −
𝑑2

4𝑐 

⟹ 𝑓(𝑥) = 𝑐 (𝑥 +
𝑑
2𝑐)

2

−
𝑑2

4𝑐 

Taking 𝑋 = 𝑥 + 𝑑 2𝑐⁄ , we get 

𝑓(𝑋) = 𝑐𝑋2 −
𝑑2

4𝑐 



Scaling the variable 𝑋 to 𝑏𝑋, we have 

𝑓(𝑏𝑋) = 𝑐(𝑏𝑋)2 −
𝑑2

4𝑐 = 𝑏2𝑐𝑋2 −
𝑑2

4𝑐 = 𝑏2 (𝑐𝑋2 −
𝑑2

4𝑐) + 𝑏2.
𝑑2

4𝑐 −
𝑑2

4𝑐 

⟹ 𝑓(𝑏𝑋) = 𝑏2𝑓(𝑋) + (𝑏2 − 1)
𝑑2

4𝑐 

Thus, 𝑓(𝑋) is scale invariant with scaling exponent 2 and a scale dependent shift which is 
equal to (𝑏2 − 1) 𝑑2 4𝑐⁄ . 

In other words, 𝑓(𝑥) is scale invariant after finding the suitable scaling variable equal to  𝑋 =
𝑥 + 𝑑 2𝑐⁄  and allowing for a scale dependent shift of 𝑓. 

We can now write, for 𝑓(𝑥) = ln 𝑥 

𝑓(𝑏𝑥) = ln(𝑏𝑥) = ln 𝑥 + ln 𝑏 

⟹ 𝑓(𝑏𝑥) = 𝑓(𝑥) + ln 𝑏 

This shows that the log functions are scale – invariant with an exponent equal to 0 and a scale 
dependent shift equal to ln 𝑏. 

lim
𝑘⟶0

𝑥𝑘 − 1
𝑘 = lim

𝑘⟶0

𝑥𝑘. ln 𝑥 − 0
1 = ( lim

𝑘⟶0
𝑥𝑘) ln 𝑥 

⟹ lim
𝑘⟶0

𝑥𝑘 − 1
𝑘 = ln 𝑥 

The above result shows that natural logarithms are a special case of the power law functions 
with the exponent being equal to 0. 

Scale invariant power laws – Example I :- 

From Kepler’s law, the orbital time period is related to radius of the circular orbit as 

𝑇2 ∝ 𝑅3 

⟹ 𝑇 ~ 𝑅3 2⁄  

This result comes because of the inverse square law from Newton’s law of gravitation. 

Scale invariant power laws – Example II :- 

Phase velocity of wave = 𝑐, Acceleration due to gravity = 𝑔, Depth of water = ℎ, Wavelength 
= 𝜆, and Density of water = 𝜌 

Using dimensional analysis, we get 

𝑐 = 𝑔𝑚𝜆𝑛ℎ𝑝𝜌𝑞  

⟹ [𝐿𝑇−1] = [𝐿𝑇−2]𝑚[𝐿]𝑛[𝐿]𝑝[𝑀𝐿−3]𝑞 = [𝐿𝑚𝑇−2𝑚][𝐿𝑛][𝐿𝑝][𝑀𝑞𝐿−3𝑞] 



⟹ [𝑀0𝐿1𝑇−1] = [𝑀𝑞𝐿𝑚+𝑛+𝑝−3𝑞𝑇−2𝑚] 

Comparing the exponents, we have 

𝑞 = 0 

−2𝑚 = −1 ⟹ 𝑚 =
1
2 

𝑚 + 𝑛 + 𝑝 − 3𝑞 = 1 ⟹ 𝑛 + 𝑝 =
1
2 ⟹ 𝑝 =

1
2 − 𝑛 

Taking 𝑛 ≡ 𝑘, we get 

𝑐 = 𝑔1 2⁄ . 𝜆𝑘. ℎ1 2⁄ −𝑘. 𝑓 (
ℎ
𝜆) 

Here, 𝑓(ℎ
𝜆⁄ ) is a dimensionless quantity. 

No other functional form can be written using 𝑔, ℎ, 𝜆 and 𝜌, that is dimensionless. 

In the large wavelength limit i.e. ℎ 𝜆⁄ ⟶ 0, 𝑐 must be independent of 𝜆. 

Thus, we must have for 𝑥 ⟶ 0 

𝑓(𝑥) ~ 𝑥𝑘 

⟹ 𝑐 = 𝑔1 2⁄ . 𝜆𝑘. ℎ1 2⁄ −𝑘. (
ℎ
𝜆)

𝑘

. 𝑓(0) = 𝑔1 2⁄ . ℎ1 2⁄ . 𝑓(0) 

⟹ 𝑐 ~ ℎ1 2⁄  

The phase velocity of the wave varies as the square root of the depth of water. 

Liquid – Gas Phase Transition :- 

Below 𝑇𝐶  i.e. 𝑇 < 𝑇𝐶  –––– Fix temperature, 𝑇 –––– Increase density, 𝜌 –––– From gaseous 
phase to liquid phase –––– Must pass through a mixed phase of gas and liquid. 

Above 𝑇𝐶  i.e. 𝑇 > 𝑇𝐶  –––– Fix temperature, 𝑇 –––– Increase density, 𝜌 –––– From gaseous 
phase to liquid phase –––– Continuous transition –––– No mixture of phases. 

Start from below 𝑇𝐶  in the gaseous phase –––– Raise temperature, 𝑇 above 𝑇𝐶  –––– Keep 
temperature, 𝑇 fixed –––– Decrease density, 𝜌 –––– Lower temperature, 𝑇 below 𝑇𝐶  –––– 
End in the liquid phase. 

For sulphur hexafluoride (Ref. – M. Ley-Koo and M. S. Green, Phys. Rev. A [1977]) 

|𝜌+ − 𝜌−| ∝ (𝑇𝐶 − 𝑇)0.327±0.006 

For Helium – 3 (Ref. – C. Pittman, T. Doiron and H. Meyer, Phys. Rev. B [1979]) 



|𝜌+ − 𝜌−| ∝ (𝑇𝐶 − 𝑇)0.321±0.006 

Here, 𝜌+ and 𝜌− are the densities on the two branches of the coexistence curve. 

 

Paramagnet – Ferromagnet (or Antiferromagnet) Phase Transition :- 

For zero external magnetic field, at high temperature, all possible directions of the spin are 
equally likely. 

The system is in a paramagnetic phase and the net magnetic moment of the system equal to 
zero. 

For zero magnetic field, below a certain temperature (𝑇𝐶 = critical temperature), the spins 
begin to align in a certain direction. 

The system exhibits a net magnetization and is in a ferromagnetic phase. 

The magnetization of the system is zero for temperature above the critical point and 
becomes non – zero as the temperature goes below the critical value. 

The magnetization increases continuously as the temperature is reduced from the critical 
point. 

In an Ising ferromagnet, the energy of the system is lowered if the spins in the neighboring 
points are aligned in the same direction i.e. the neighboring spins are parallel to each other. 

In an Ising antiferromagnet, the energy of the system is lowered if the spins in the 
neighboring points are aligned in the opposite direction i.e. the neighboring spins are anti – 
parallel to each other. 

In the three-dimensional Ising antiferromagnet 𝐷𝑦𝐴𝑙𝑂3, the magnetization is (Ref. – L. M. 
Holmes, L. G. Van Uitert and G. W. Hull, Sol. State Commun. [1971]), 

𝑀 ∝ (𝑇𝐶 − 𝑇)0.311±0.006 



 

Order parameter :- 

The order parameter is equal to zero in one particular phase while it has a non – zero value 
in the other phase. 

For liquid – gas phase transitions 𝜌𝑙𝑖𝑞𝑢𝑖𝑑 − 𝜌𝑔𝑎𝑠 i.e. the difference in the densities of the two 
phases is taken as the order parameter. 

For magnetic phase transitions, the magnetization (𝑀) is taken as the order parameter. 

 



Here, 𝜌 − 𝜌𝐶 ≡ 𝑀 and 𝑃 − 𝑃𝑐 ≡ 𝐻. 

Superfluid phase transition in Helium – 4 :- 

Within a range of pressure between zero and twenty five atmospheres, liquid helium 
undergoes a continuous phase transition to superfluid helium at a temperature of about two 
kelvins. 

 

Very close to the transition temperature, the specific heat varies as (Ref. – J. A. Lipa and T. C. 
P. Chiu, Phys. Rev. Lett. [1983]) 

𝐶 ∝ |𝑇 − 𝑇𝜆|0.013±0.003 

The specific heat does not diverge because of the positive value of the critical exponent. 

For 𝑇 > 𝑇𝜆 

𝐶 ≈ 𝐴+ ln(𝑇 − 𝑇𝜆) + 𝐵+ 

For 𝑇 < 𝑇𝜆 

𝐶 ≈ 𝐴− ln(𝑇𝜆 − 𝑇) + 𝐵− 

Here 𝐴+, 𝐵+, 𝐴− and 𝐵− are constants. 

There is a discontinuity in the specific heat across the transition temperature but no 
divergence in its value. 

Self – avoiding random walk :- 

The random walker cannot land in the same point more than once i.e. the random path 
cannot intersect itself. 

In three dimensions, the root mean square distance after 𝑁 ⟶ ∞ steps is (Ref. – J. P. Cotton, 
J. Physique Lett. [1980])  



𝑅 ∝ 𝑁0.586±0.004 

This model applies to isolated polymer chain in solution because more than one molecule in 
the polymer cannot be at the same point. 

Some important questions :- 

I) Why do phase transitions occur? 
II) How can we determine the phase diagram as the external parameters are changed? 
III) How can we calculate the critical exponents associated with phase transitions? 
IV) Why do we see universality in different set of phenomena? 

Mean field theories (where a physical variable is replaced by its average value) like the 
Landau theory of phase transitions, break down near the critical point as the fluctuations 
grow infinitely large. 

Near a critical point, the equation of state for magnetic systems (developed by Benjamin 
Widom) is analogous to that of a fluid (developed by Van der Waals). 

Leo Kadanoff suggested that near a critical point, the system looks similar at all length scales. 

The critical exponents of thermodynamic quantities behave independently for different 
systems. 

Partition function, free energy and thermodynamic limit :- 

Ω is the sample region that denotes the system of our interest and 𝐿 denotes the 
characteristic linear dimensions of the system. 

𝑉(Ω) ∝ 𝐿𝑑  and 𝑆(Ω) ∝ 𝐿𝑑−1 denote the volume and the surface area of the specified region 
respectively. Here, 𝑑 represents the dimensionality of the system. 

𝐻Ω = −𝑘𝐵𝑇 ∑ 𝐾𝑛Θ𝑛
𝑛

 

⟹ −𝛽𝐻Ω = ∑ 𝐾𝑛Θ𝑛
𝑛

 

𝐾𝑛 determines the coupling constants and Θ𝑛 determines the various combinations of the 
degrees of freedom of the system. 

𝐾𝑛 are the external parameters such as temperature, magnetic field or exchange interaction 
parameter. 

The partition function is given as 

𝑍[{𝐾𝑛}] = 𝑇𝑟(𝑒−𝛽𝐻Ω) 



Here, 𝑇𝑟 operation refers to summing over all the degrees of freedom of the system. 

The free energy is given as 

𝐹[{𝐾𝑛}] = −𝑘𝐵𝑇 ln[𝑇𝑟(𝑒−𝛽𝐻Ω)] 

⟹ 𝐹Ω = −𝑘𝐵𝑇 ln 𝑍Ω 

The quantities 𝜕𝐹Ω 𝜕𝐾n⁄ , 𝜕2𝐹Ω 𝜕𝐾n
2⁄  and 𝜕2𝐹Ω 𝜕𝐾m𝜕𝐾n⁄  provide the information about the 

thermodynamics of the system. 

The free energy for a finite system can be written as 

𝐹Ω[{𝐾𝑛}] = 𝑉(Ω)𝑓𝑏[{𝐾𝑛}] + 𝑆(Ω)𝑓𝑠[{𝐾𝑛}] + 𝒪(𝐿𝑑−2) 

The bulk free energy per unit volume is given by 

𝑓𝑏[{𝐾𝑛}] = lim
𝑉(Ω)⟶∞

𝐹Ω[{𝐾𝑛}]
𝑉(Ω)  

The surface free energy per unit volume is given by 

𝑓𝑠[{𝐾𝑛}] = lim
𝑆(Ω)⟶∞

𝐹Ω[{𝐾𝑛}] − 𝑉(Ω)𝑓𝑏[{𝐾𝑛}]
𝑆(Ω)  

The free energy for a system defined on a lattice with 𝑁 number of lattice sites can be written 
as 

𝐹Ω[{𝐾𝑛}] ~ 𝑁(Ω)𝑓𝑏[{𝐾𝑛}] 

The bulk free energy per unit site is then given by 

𝑓𝑏[{𝐾𝑛}] = lim
𝑁(Ω)⟶∞

𝐹Ω[{𝐾𝑛}]
𝑁(Ω)  

The above three conditions define the thermodynamic limit. 

The concepts of phase transitions and critical phenomena are only defined in the 
thermodynamic limit. 

Thermodynamic limit for power law interactions :- 

Let the interaction potential (either for masses or charges) be given by 

𝑈(𝑟) =
𝐴
𝑟𝑛 

The total energy of a spherical system with radius 𝑅 is defined as 

𝐸(𝑅) =
1
2 ∫ 𝑑𝑑𝑟. 𝑑𝑑𝑟′. 𝜌(𝑟). 𝑈(𝑟 − 𝑟′). 𝜌(𝑟′) 



The integration is carried out in the region specified by Ω. 

Assuming uniform density, we get 

𝐸(𝑅) =
1
2 𝜌2 ∫ 𝑑𝑑𝑟. 𝑑𝑑𝑟′.

1
|𝑟 − 𝑟′|𝑛 

Taking 𝑟 = 𝑅𝑥⃗ and 𝑟′ = 𝑅𝑦⃗, we get 

𝐸(𝑅) =
1
2 𝜌2 ∫ 𝑅𝑑𝑑𝑑𝑥. 𝑅𝑑𝑑𝑑𝑦.

1
|𝑅𝑥⃗ − 𝑅𝑦⃗|𝑛 

=
1
2 𝜌2𝑅2𝑑−𝑛 ∫ 𝑑𝑑𝑥. 𝑑𝑑𝑦.

1
|𝑥⃗ − 𝑦⃗|𝑛 

The integral is a constant independent of R and is taken to be equal to 𝐶. 

The energy per unit volume is given by 

𝐸𝑏 =
𝐸(𝑅)
𝑉(𝑅) =

𝐶𝜌2

2 𝑅2𝑑−𝑛

𝑉𝑑𝑅𝑑 =
𝐶𝜌2

2𝑉𝑑
𝑅𝑑−𝑛 

Here 𝑉𝑑  is the volume of the 𝑑 dimensional unit sphere. 

𝐸𝑏 ~ 𝑅𝑑−𝑛 

For 𝑅 ⟶ ∞, the thermodynamic limit is well – defined iff 𝐸𝑏 does not diverge i.e. when 

𝑑 − 𝑛 < 0 

⟹ 𝑛 > 𝑑 

Phase diagram :- 

The system hamiltonian is given by ∑ 𝐾𝑛Θ𝑛
𝐷
𝑛=1  where Θ1, Θ2, …, Θ𝐷 are the possible 

combinations of the degrees of the freedom of the system. 

𝐾1, 𝐾2, …, 𝐾𝐷 are the coupling constants which denote the axes of the 𝐷 dimensional phase 
diagram. 

The set of all points where the bulk free energy is non – analytic can combine to form a point 
or a line, a plane or a hyperplane and so on. 

The possible loci of non – analyticity of 𝑓𝑏[{𝐾𝑛}] are points, lines, planes, hyperplanes and so 
on, with dimensions given by 𝐷𝑆 = 0, 1, 2, 3, … respectively. 

Define codimension for each possible locus of non – analytic 𝑓𝑏[{𝐾𝑛}] as 𝐶 = 𝐷 − 𝐷𝑆. 

𝐶 is an invariant quantity i.e. changing 𝐷 (by adding or removing a coupling constant 𝐾𝑛) will 
change 𝐷𝑆 by the same number.  



Phase boundary :- 

Phase boundary separates two distinct phases in the phase diagram. 

If 𝐶 = 1, the singular locus denotes a phase boundary. 

Triple point and critical point are given by singular locus with 𝐶 = 0. 

There may exist a particular path that goes from one side of the phase boundary to the other 
but along which 𝑓𝑏[{𝐾𝑛}] is analytic. 

For transitioning from fluid to solid, the system must undergo phase transition. 

For transition from liquid to gas, the system can follow a path such that no singularities in the 
thermodynamic quantities are encountered. 

 

Types of phase transition :- 

𝑓𝑏[{𝐾𝑛}] is continuous everywhere for all systems in general. 

Either one or more than one of 𝜕𝑓b[{𝐾n}]
𝜕𝐾𝑖

⁄  is discontinuous across the phase boundary. 

This is called a first order phase transition. 

All of 𝜕𝑓b[{𝐾n}]
𝜕𝐾𝑖

⁄  is continuous across the phase boundary. This is called a continuous 

phase transition. 

Paul Ehrenfest denoted a phase transition to be of the n-th order if the n-th order derivative 
of the free energy becomes discontinuous. 

Ehrenfest’s classification of phase transition is incorrect since in the so – called ‘second order’ 
phase transitions, the second order derivative of the free energy i.e. the specific heat is 
actually diverging and not discontinuous. 



Correlation length :- 

The correlation length determines the range of statistical fluctuations in space for a 
measurable physical quantity. 

It tells us how far in space are the measurable quantities related to one another. 

𝜉 diverges to infinity when the temperature reaches the critical point as 𝜉 ≈ 𝜉0𝑡−2 3⁄ . 

Here, 𝑡 = |𝑇 − 𝑇𝐶| 𝑇𝐶⁄  is the reduced temperature that measures the deviation of the 
temperature of the system from the critical point. 

𝜉0 is the correlation length when the system is very far away from the critical point. 

Finite size effects :- 

In a system of finite size (characteristic dimension of the system = 𝐿), the correlation length, 
𝜉 cannot exceed 𝐿. 

As the system temperature comes closer to 𝑇𝐶, 𝜉 diverges and becomes greater than the 
system’s characteristic length, 𝐿. 

The behavior of the real system deviates from that of the ideal (infinitely large) system 
described by the thermodynamic limit of 𝑓𝑏. 

Take 𝜉0 ≈ 10Å and 𝐿 = 1𝑐𝑚. Thus, 

𝐿 ≈ 𝜉0𝑡−2 3⁄  

⟹ 1𝑐𝑚 ≈ (10−7𝑐𝑚)𝑡−2 3⁄  

⟹ 𝑡−2 3⁄ ≈ 107 

⟹ 𝑡 ≈ 10−21 2⁄  

⟹
|𝑇 − 𝑇𝐶|

𝑇𝐶
≈ 10−21 2⁄  

⟹ 𝑇 − 𝑇𝐶 ≈ ±10−21 2⁄ 𝑇𝐶 

⟹ 𝑇 ≈ (1 ± 10−21 2⁄ )𝑇𝐶 

The difference between the real temperature of the system and the critical temperature is 
virtually non – existent. 

The deviation of the system’s behavior from the ideal thermodynamic limit is negligible. 

Phase transition models :- 

Ising model, Heisenberg model, Potts model, Baxter model and F model are used in statistical 
mechanics. 



Construct a model that represents the real system as accurately as possible by fine tuning 
the parameters of the model to match with the experimental results. 

Construct a model that captures the essential parts of the system with minimal assumptions 
and focuses only on the physically relevant results. 

The Ising model :- 

The degrees of freedom are the classical spin variables that can represent either an up state 
or a down state given by 

𝑆𝑖 = ±1 

Here, 𝑖 denotes the label of the site that runs as 1, 2, …, 𝑁(Ω). 

The total number of possible states are 2𝑁(Ω). 

The Hamiltonian is given by 

𝐻 = − ∑ ℋ𝑖𝑆𝑖
𝑖

− ∑ 𝐽𝑖𝑗𝑆𝑖𝑆𝑗
𝑖,𝑗

− ∑ 𝐾𝑖𝑗𝑘𝑆𝑖𝑆𝑗𝑆𝑘
𝑖,𝑗,𝑘

− ⋯ 

ℋ𝑖 is the external magnetic field that interacts with individual spins. 

𝐽𝑖𝑗  is the exchange interchange that couples two spins together. 

𝐾𝑖𝑗𝑘 is the exchange interchange that couples three spins together. 

𝐹Ω[𝑇, {ℋ𝑖}, {𝐽𝑖𝑗}, {𝐾𝑖𝑗𝑘}, … ] = −𝑘𝐵𝑇 ln[𝑇𝑟(𝑒−𝛽𝐻Ω)] 

Here, 

𝑇𝑟(𝑒−𝛽𝐻Ω) = ∑ ∑ … ∑ (𝑒−𝛽𝐻Ω)
𝑆𝑁(Ω)=±1𝑆2=±1𝑆1=±1

= ∑ (𝑒−𝛽𝐻Ω)
{𝑆𝑖}=±1

 

The partition function is given by 

𝑍Ω[𝑇, {ℋ𝑖}, {𝐽𝑖𝑗}, {𝐾𝑖𝑗𝑘}, … ] = ∑ exp(−𝛽𝐸n)
2𝑁(Ω)

𝑛=1

 

𝐸n is the energy of the 𝑛𝑡ℎ state and is a linear combination of the coupling constants i.e. 
ℋ, 𝐽, 𝐾, … 

Thus, 𝑍Ω and hence, 𝐹Ω is analytic everywhere. 

For the thermodynamic limit to exist we must have (Ref. – C. Domb and M. S. Green, Phase 
Transitions and Critical Phenomena Vol. 1 [1972]) 



∑ |𝐽𝑖𝑗|
𝑗,(𝑗≠𝑖)

< ∞ 

In general, if the two spin interaction has the form 

𝐽𝑖𝑗 =
𝐴

|𝑟𝑖 − 𝑟𝑗|𝑛 

The thermodynamic limit exists if 𝑛 > 𝑑, where 𝑑 is the dimensionality of the system. 

For nearest neighbor interactions (𝐽𝑖𝑗 = 0 𝑓𝑜𝑟 𝑗 ≠ 𝑖 ± 1) with the same interaction 
strength (𝐽), we have 

∑ |𝐽𝑖𝑗|
𝑗,(𝑗≠𝑖)

= ∑ |𝐽𝑖𝑗|
𝑗=(𝑖−1),(𝑖+1)

= ∑ 𝐽
𝑗=(𝑖−1),(𝑖+1)

= 2𝐽 < ∞ 

The hamiltonian for the nearest neighbor Ising model is given as 

𝐻 = −ℋ ∑ 𝑆𝑖
𝑖

− 𝐽 ∑ 𝑆𝑖𝑆𝑗
〈𝑖𝑗〉

 

The external magnetic field is taken to be uniform in space. 

If ℋ > 0, the spins tend to point up to lower the energy of the system. 

If ℋ < 0, the spins tend to point down to lower the energy of the system. 

In both cases, the spins tend to align parallel to the external magnetic field. 

If 𝐽 > 0, the system is ferromagnetic as the spins tend to align parallel to another. 

If 𝐽 < 0, the system is anti–ferromagnetic as the spins tend to align anti–parallel to another. 

In the absence of the external magnetic field, we have 

𝐻 = −𝐽 ∑ 𝑆𝑖𝑆𝑗
〈𝑖𝑗〉

 

The hamiltonian remains unchanged if the spins in all the lattice sites are switched i.e. the 
spin up particles are transformed into spin down particles and vice- versa. 


